Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
نویسندگان
چکیده
In this paper, we study the superconvergence behavior of discontinuous Galerkin methods using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable coefficients. The study establishes superconvergence results for the flux function approximation as well as for the DG solution itself. To be more precise, we first prove that the DG flux function is superconvergent towards a particular flux function of the exact solution, with an order of O(h), when piecewise polynomials of degree k are used. We then prove that the highest superconvergence rate of the DG solution itself is O(h 3 2 ) as the variable coefficient degenerates or achieves the value zero in the domain. As byproducts, we obtain superconvergence properties for the DG solution and the DG flux function at special points and for cell averages. All theoretical findings are confirmed by numerical experiments.
منابع مشابه
Accuracy enhancement of discontinuous Galerkin methods for stiff source terms
Discontinuous Galerkin (DG) methods exhibit ”hidden accuracy” that makes the superconvergence of this method an increasing popular topic to address. Previous work has implemented a convolution kernel approach that allows us to improve the order of accuracy from k+1 to order 2k+m for time-dependent linear convection-diffusion equations, where k is the highest degree polynomial used in the approx...
متن کاملDiscontinuous Galerkin method for hyperbolic equations involving δ - functions 1
In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve hyperbolic equations involving δ-functions. We investigate negative-order norm error estimates for the accuracy of DG approximations to linear hyperbolic conservation laws in one space dimension with singular initial data. We prove that, by using piecewise k-th degree polynomials, at time t, the error in the H(R\...
متن کاملSuperconvergence of Discontinuous Galerkin and Local Discontinuous Galerkin Schemes for Linear Hyperbolic and Convection-Diffusion Equations in One Space Dimension
In this paper, we study the superconvergence property for the discontinuous Galerkin (DG) and the local discontinuous Galerkin (LDG) methods, for solving one-dimensional time dependent linear conservation laws and convection-diffusion equations. We prove superconvergence towards a particular projection of the exact solution when the upwind flux is used for conservation laws and when the alterna...
متن کاملSuperconvergence of Discontinuous Galerkin Methods Based on Upwind-biased Fluxes for 1d Linear Hyperbolic Equations
In this paper, we study superconvergence properties of the discontinuous Galerkin method using upwind-biased numerical fluxes for one-dimensional linear hyperbolic equations. A (2k + 1)th order superconvergence rate of the DG approximation at the numerical fluxes and for the cell average is obtained under quasi-uniform meshes and some suitable initial discretization, when piecewise polynomials ...
متن کاملNumerical Analysis and Scientific Computing Preprint Seria Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach
Various superconvergence properties of discontinuous Galerkin (DG) and local DG (LDG) methods for linear hyperbolic and parabolic equations have been investigated in the past. Due to these superconvergence properties, DG and LDG methods have been known to provide good wave resolution properties, especially for long time integrations [26]. In this paper, under the assumption of uniform mesh and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016